论文标题
网络中的等级社区结构
Hierarchical community structure in networks
论文作者
论文摘要
模块化和分层的社区结构在现实世界中的复杂系统中普遍存在。试图检测和研究这些结构的巨大努力。模块化检测的重要理论进步包括通过使用概率生成模型正式定义社区结构来识别可检测性的基本限制。检测层次结构结构与从社区发现继承的挑战一起引入了其他挑战。在这里,我们提出了一项关于网络中层次社区结构的理论研究,迄今为止,该研究还没有受到同样的严格关注。我们解决以下问题:1)我们应该如何定义社区的层次结构? 2)我们如何确定网络中是否有足够的证据表明层次结构? 3)我们如何有效地检测层次结构?我们通过基于随机外部公平分区的概念引入层次结构的定义来解决这些问题,及其与概率模型(例如流行的随机块模型)的关系。我们列举检测层次结构所涉及的挑战,并通过研究层次结构的光谱特性,提出了一种检测它们的有效且原则性的方法。
Modular and hierarchical community structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular have included identifying fundamental limits of detectability by formally defining community structure using probabilistic generative models. Detecting hierarchical community structure introduces additional challenges alongside those inherited from community detection. Here we present a theoretical study on hierarchical community structure in networks, which has thus far not received the same rigorous attention. We address the following questions: 1) How should we define a hierarchy of communities? 2) How do we determine if there is sufficient evidence of a hierarchical structure in a network? and 3) How can we detect hierarchical structure efficiently? We approach these questions by introducing a definition of hierarchy based on the concept of stochastic externally equitable partitions and their relation to probabilistic models, such as the popular stochastic block model. We enumerate the challenges involved in detecting hierarchies and, by studying the spectral properties of hierarchical structure, present an efficient and principled method for detecting them.