论文标题
谐波地图流量几乎是形态图
Harmonic map flow for almost-holomorphic maps
论文作者
论文摘要
令$σ$为紧凑的表面和$ n $ a $ compactkähler歧管,具有非负溶性双形性曲率。对于谐波图流的解决方案,从几乎旋晶地图$σ\到n $(在能源意义上)开始,每个单数时间的极限连续延伸到气泡点上,并且没有颈部出现。
Let $Σ$ be a compact oriented surface and $N$ a compact Kähler manifold with nonnegative holomorphic bisectional curvature. For a solution of harmonic map flow starting from an almost-holomorphic map $Σ\to N$ (in the energy sense), the limit at each singular time extends continuously over the bubble points and no necks appear.