论文标题

一种高阶的半拉格兰吉亚方法,用于一致的蒙特卡洛解决方案的随机拉格朗日漂移扩散模型与欧拉不连续的光谱元素方法

A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method

论文作者

Natarajan, H., Popov, P. P., Jacobs, G. B.

论文摘要

在[Natarajan和Jacobs,Computer and Fluids,2020]中开发的Lagrangian传输方程的溶液的明确半拉格朗日方法,用于与不连续的光谱元素方法(DSEM)近似Eulerian Companting Lauds近似的随机微分方程解决方案。该方法扩展了DSEM的良好特性,包括其高阶精度,其本地和边界拟合的特性以及其在平行平台上的高性能,用于同时发生的蒙特卡洛,半拉格朗日和欧拉尔的解决方案,以及一类时依赖性的问题,这些解决方案可以由Eulelian-Lagrangian-Lagrangian-Lagrangian lagrangian配方来描述。半拉格朗日方法在光谱元件内的高斯正交搭配节点处的颗粒。根据漂移速度和维也纳的增量强迫并形成插入式插入剂的淋巴结基础。以半拉格朗日的方式映射此插值,通过使用元素边界值的约束来拟合的最小二乘拟合。随机蒙特卡洛样品在正交节点上是平均元素的。稳定的显式时间步长增量足够小,可以防止粒子离开元素的边界。因此,半拉格朗日的方法是局部和平行的,没有网格复杂性,并且在粒子网方法中,常用的Lagrangian粒子求解器的平行化挑战是用于解决Eulerian-Lagrangian配方的溶液。正式的证据表明,半拉格朗日算法会根据欧拉福克·普朗克方程进化解决方案。对于漂移扩散问题的一个和二维中的数值测试表明,该方法对于恒定和非恒定对流和扩散速度呈指数收敛。

The explicit semi-Lagrangian method method for solution of Lagrangian transport equations as developed in [Natarajan and Jacobs, Computer and Fluids, 2020] is adopted for the solution of stochastic differential equations that is consistent with Discontinuous Spectral Element Method (DSEM) approximations of Eulerian conservation laws. The method extends the favorable properties of DSEM that include its high-order accuracy, its local and boundary fitted properties and its high performance on parallel platforms for the concurrent Monte-Carlo, semi-Lagrangian and Eulerian solution of a class of time-dependent problems that can be described by coupled Eulerian-Lagrangian formulations. The semi-Lagrangian method seeds particles at Gauss quadrature collocation nodes within a spectral element. The particles are integrated explicitly in time according to a drift velocity and a Wiener increment forcing and form the nodal basis for an advected interpolant. This interpolant is mapped back in a semi-Lagrangian fashion to the Gauss quadrature points through a least squares fit using constraints for element boundary values. Stochastic Monte-Carlo samples are averaged element-wise on the quadrature nodes. The stable explicit time step Wiener increment is sufficiently small to prevent particles from leaving the element's bounds. The semi-Lagrangian method is hence local and parallel and does not have the grid complexity, and parallelization challenges of the commonly used Lagrangian particle solvers in particle-mesh methods for solution of Eulerian-Lagrangian formulations. Formal proof is presented that the semi-Lagrangian algorithm evolves the solution according to the Eulerian Fokker-Planck equation. Numerical tests in one and two dimensions for drift-diffusion problems show that the method converges exponentially for constant and non-constant advection and diffusion velocities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源