论文标题

Q空间定量扩散MRI测量使用拉伸指示表示

Q-space quantitative diffusion MRI measures using a stretched-exponential representation

论文作者

Pieciak, Tomasz, Afzali, Maryam, Bogusz, Fabian, Aja-Fernández, Jones, Derek K.

论文摘要

扩散磁共振成像(DMRI)是一种相对现代的技术,用于以非侵入性研究组织微观结构。非高斯扩散表示与受限制的扩散有关,并可以提供有关潜在组织特性的信息。在本文中,我们通过分析得出信号的$ n $ th顺序统计,考虑到扩散的伸展指定表示。然后,我们检索Q空间定量度量,例如返回到原始概率(RTOP),Q-Space均方根位移(QMSD),Q-Space平均四阶位移(QMFD)。在非高斯假设下,拉伸指定表示可以从较高的$ b $价值制度中处理扩散贡献,这在早期阶段可以对神经退行性疾病的诊断或预后有用。该方法的数值实现可在https://github.com/tpieciak/stretched上免费获得。

Diffusion magnetic resonance imaging (dMRI) is a relatively modern technique used to study tissue microstructure in a non-invasive way. Non-Gaussian diffusion representation is related to the restricted diffusion and can provide information about the underlying tissue properties. In this paper, we analytically derive $n$-th order statistics of the signal considering a stretched-exponential representation of the diffusion. Then, we retrieve the Q-space quantitative measures such as the Return-To-the-Origin Probability (RTOP), Q-space mean square displacement (QMSD), Q-space mean fourth-order displacement (QMFD). The stretched-exponential representation enables the handling of the diffusion contributions from a higher $b$-value regime under a non-Gaussian assumption, which can be useful in diagnosing or prognosis of neurodegenerative diseases in the early stages. Numerical implementation of the method is freely available at https://github.com/TPieciak/Stretched.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源