论文标题

弱监督的在线哈希

Weakly-Supervised Online Hashing

论文作者

Zhan, Yu-Wei, Luo, Xin, Sun, Yu, Wang, Yongxin, Chen, Zhen-Duo, Xu, Xin-Shun

论文摘要

随着社交网站的迅速发展,近年来,社交图像的爆炸性增长具有用户提供的标签,这些标签不断以流媒体方式到达。由于快速查询速度和较低的存储成本,基于散列的图像搜索方法引起了人们越来越多的关注。但是,现有的社交形象检索方法基于批处理模式,批处理模式违反了社交形象的性质,即社交图像通常是定期生成或以流方式收集的。尽管存在许多在线图像散列方法,但它们要么采用无监督的学习来忽略相关标签,要么以需要高质量标签的监督方式设计。在本文中,为了克服上述局限性,我们提出了一种新方法,名为弱监督在线哈希(WOH)。为了学习高质量的哈希码,WOH通过考虑标签的语义并消除噪声来利用弱监督。此外,我们为WOH开发了一种离散的在线优化算法,该算法是有效且可扩展的。在两个现实世界数据集上进行的广泛实验表明,与几个最先进的哈希基线相比,WOH的优越性。

With the rapid development of social websites, recent years have witnessed an explosive growth of social images with user-provided tags which continuously arrive in a streaming fashion. Due to the fast query speed and low storage cost, hashing-based methods for image search have attracted increasing attention. However, existing hashing methods for social image retrieval are based on batch mode which violates the nature of social images, i.e., social images are usually generated periodically or collected in a stream fashion. Although there exist many online image hashing methods, they either adopt unsupervised learning which ignore the relevant tags, or are designed in the supervised manner which needs high-quality labels. In this paper, to overcome the above limitations, we propose a new method named Weakly-supervised Online Hashing (WOH). In order to learn high-quality hash codes, WOH exploits the weak supervision by considering the semantics of tags and removing the noise. Besides, We develop a discrete online optimization algorithm for WOH, which is efficient and scalable. Extensive experiments conducted on two real-world datasets demonstrate the superiority of WOH compared with several state-of-the-art hashing baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源