论文标题
dirac fermions的压力工程在Quasi One维tl $ _2 $ MO $ _6 $ SE $ _6 $
Pressure Engineering of the Dirac Fermions in Quasi-One-Dimensional Tl$_2$Mo$_6$Se$_6$
论文作者
论文摘要
除标准狄拉克或Weyl fermions以外的拓扑带分散已经引起了人们对材料科学的兴趣。其中,最近在准二维导体的家族中提出了立方狄拉克·费米,$ _2 $ mo $ $ $ _6 $ x $ x $ _6 $(a = na,k,in,tl; x = s,s,s,te),在一个$ k $ -k $ -space displies中,乐队交叉的表征是在一个$ k $ space depersion中的固定性。但是,尚不清楚外部扰动如何改变这些非平凡的载体并最终引起新的不同量子阶段。在这里,我们研究了代表性的Quasi-One维tl $ _2 $ MO $ $ _6 $ _6 $ SE $ _6 $通过第一原则计算,在外部压力下,在外部压力下研究了Dirac Fermions的演变。具体而言,发现包括散装的狄拉克交叉口和拓扑表面状态在内的拓扑特性在最高50 GPA的压力下逐渐变化,从而经历了从六边形相位到身体以身体为中心的四方相的结构过渡。在50 GPA以上,该系统在拓扑上更可能是微不足道的。此外,我们还研究了其声子光谱,该光谱揭示了负压力的负音子模式的逐渐消耗,这与高压相中的三维费米表面一致。我们的工作可能为进一步的实验搜索和在这种有趣的物质状态下的拓扑非平凡费米管的带工程提供有用的指南。
Topological band dispersions other than the standard Dirac or Weyl fermions have garnered the increasing interest in materials science. Among them, the cubic Dirac fermions were recently proposed in the family of quasi-one-dimensional conductors A$_2$Mo$_6$X$_6$ (A= Na, K, In, Tl; X= S, Se, Te), where the band crossing is characterized by a linear dispersion in one $k$-space direction but the cubic dispersion in the plane perpendicular to it. It is not yet clear, however, how the external perturbations can alter these nontrivial carriers and ultimately induce a new distinct quantum phase. Here we study the evolution of Dirac fermions, in particular the cubic Dirac crossing, under external pressure in the representative quasi-one-dimensional Tl$_2$Mo$_6$Se$_6$ via the first-principles calculations. Specifically, it is found that the topological properties, including the bulk Dirac crossings and the topological surface states, change progressively under pressure up to 50 GPa where it undergoes a structural transition from the hexagonal phase to body-centered tetragonal phase. Above 50 GPa, the system is more likely to be topologically trivial. Further, we also investigate its phonon spectra, which reveals a gradual depletion of the negative phonon modes with pressure, consistent with the more three-dimensional Fermi surface in the high-pressure phase. Our work may provide a useful guideline for further experimental search and the band engineering of the topologically nontrivial fermions in this intriguing state of matter.