论文标题
低质量吸积率以低质量增生率观察GRO J1744-28
NuSTAR observation of GRO J1744-28 at low mass accretion rate
论文作者
论文摘要
我们使用$ \ sim $ \ sim $ 29 ks在2017年2月以$ 3.2 \ times 10^{36} $ erg/s(3-50 kev)的低光度(3-50 kev)介绍了LMXB GRO J1744-28的光谱分析。连续频谱以带有指数切割的吸收幂律和附加的铁线成分进行建模。我们发现CRSF没有明显的指示,因此使用统计方法对脉冲相平均和相分辨光谱进行详细的回旋线搜索。先前检测到的II型X射线爆发不存在。检测到2.141124(9)Hz时的明显脉动。脉冲轮廓显示出次级峰的指示,在较高的通量下未见。 3-20 KEV频段中CRSF强度的4 $σ$上限为0.07 keV,低于在较高的光度下发现的线的强度。脉动的检测表明,即使源未进入“螺旋桨”制度,即使$ 4.15 \ times 10^{ - 10} $ erg/cm $ $^{2} $/s的源通量几乎低于先前有关此源的螺旋桨制度的阈值级数。因此,在GRO J1744-28中的过渡必须低于$ 3.2 \ times 10^{36} $ erg/s的亮度,这意味着一个表面磁场$ \ Lessim 2.9 \ times 10^{11} $ g和质量积分率$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ hilyssim 1.7 \ \ \ \ times times times 10^16} $ g/s/s/s/ CRSF深度作为光度的函数的变化并不意外,并且在其他来源已观察到。该结果可能意味着发射几何形状的变化是质量积聚率的函数,以降低线的深度以下。
We present the spectral analysis of the LMXB GRO J1744-28 using $\sim$29 ks of NuSTAR data taken in 2017 February at a low luminosity of $3.2\times 10^{36}$ erg/s (3-50 keV). The continuum spectrum is modeled with an absorbed power-law with exponential cut-off, and an additional iron line component. We find no obvious indications for a CRSF and therefore perform a detailed cyclotron line search using statistical methods on the pulse phase-averaged as well as phase-resolved spectra. The previously detected Type II X-ray bursts are absent. Clear pulsations at a period of 2.141124(9) Hz are detected. The pulse profile shows an indication of a secondary peak, which was not seen at higher flux. The 4$σ$ upper limit for the strength of a CRSF in the 3-20 keV band is 0.07 keV, lower than the strength of the line found at higher luminosity. The detection of pulsations shows that the source did not enter the "propeller" regime, even though the source flux of $4.15\times 10^{-10}$ erg/cm$^{2}$/s was almost one order of magnitude below the threshold for the propeller regime claimed in previous studies on this source. The transition into the propeller regime in GRO J1744-28 must therefore be below a luminosity of $3.2\times 10^{36}$ erg/s, which implies a surface magnetic field $\lesssim 2.9\times 10^{11}$ G and mass accretion rate $\lesssim 1.7\times 10^{16}$ g/s. A change of the CRSF depth as function of luminosity is not unexpected and has been observed in other sources. This result possibly implies a change in emission geometry as function of mass accretion rate to reduce the depth of the line below our detection limit.