论文标题

xzzx表面代码

The XZZX Surface Code

论文作者

Ataides, J. Pablo Bonilla, Tuckett, David K., Bartlett, Stephen D., Flammia, Steven T., Brown, Benjamin J.

论文摘要

使用量子计算机进行大型计算可能需要基于量子错误校正代码的耐故障结构。面临的挑战是设计实用的量子误差校正代码,这些代码使用适中的资源在逼真的噪声方面表现良好。在这里,我们表明表面代码的变体(XZZX代码)为容忍量的量子计算提供了出色的性能。此代码的误差阈值匹配每个单量Pauli噪声通道可以通过随机代码(哈希)实现的目标;这是显示具有此通用属性的第一个明确代码。我们提供的数值证据表明,阈值甚至超过了与实验相关的噪声参数范围的散列界面。着眼于Qubit Dephasing是主要噪声的共同情况,我们表明该代码具有实用,高性能的解码器,并且在综合征测量不可靠的现实环境中超过了所有以前已知的阈值。我们继续演示可以通过专门使用代码来利用噪声结构来获得的有利的子阈值资源缩放。我们表明,当我们执行容忍故障的量子计算时,可以维持所有这些优势。

Performing large calculations with a quantum computer will likely require a fault-tolerant architecture based on quantum error-correcting codes. The challenge is to design practical quantum error-correcting codes that perform well against realistic noise using modest resources. Here we show that a variant of the surface code -- the XZZX code -- offers remarkable performance for fault-tolerant quantum computation. The error threshold of this code matches what can be achieved with random codes (hashing) for every single-qubit Pauli noise channel; it is the first explicit code shown to have this universal property. We present numerical evidence that the threshold even exceeds this hashing bound for an experimentally relevant range of noise parameters. Focusing on the common situation where qubit dephasing is the dominant noise, we show that this code has a practical, high-performance decoder and surpasses all previously known thresholds in the realistic setting where syndrome measurements are unreliable. We go on to demonstrate the favourable sub-threshold resource scaling that can be obtained by specialising a code to exploit structure in the noise. We show that it is possible to maintain all of these advantages when we perform fault-tolerant quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源