论文标题

缺少链接作为复杂反应网络中看似可变常数的来源

Missing links as a source of seemingly variable constants in complex reaction networks

论文作者

Nicolaou, Zachary G., Motter, Adilson E.

论文摘要

网络科学的一个主要挑战是确定从实验观察和理论模型中管理复杂网络动态的参数。例如,在复杂的化学反应网络中,例如描述内燃机中的过程和发电机中的过程,尽管实验性努力很大,但在整个研究中,对恒定估计的评分差异很大。在这里,我们研究了测量常数的可变性可能主要归因于缺失网络信息对参数估计的影响。通过对不完整的化学反应网络中测量值的数值模拟,我们表明网络链接的不负责任性假定不重要的(局部灵敏度少于测得的链接的局部敏感性少于2%)也可能会产生明显的速率恒定变化,即使数据中没有实验错误,也可能会产生一个数量级。此外,在所有情况下,速率恒定估计的对数偏差与累积的相对灵敏度之间的相关系数在所有情况下均小于$ 0.5 $。因此,对于复杂网络上的动态过程,通过在特定条件下收集的数据确定新参数来迭代扩展模型,这不太可能产生可靠的结果。

A major challenge in network science is to determine parameters governing complex network dynamics from experimental observations and theoretical models. In complex chemical reaction networks, for example, such as those describing processes in internal combustion engines and power generators, rate constant estimates vary significantly across studies despite substantial experimental efforts. Here, we examine the possibility that variability in measured constants can be largely attributed to the impact of missing network information on parameter estimation. Through the numerical simulation of measurements in incomplete chemical reaction networks, we show that unaccountability of network links presumed unimportant (with local sensitivity amounting to less than two percent of that of a measured link) can create apparent rate constant variations as large as one order of magnitude even if no experimental errors are present in the data. Furthermore, the correlation coefficient between the logarithmic deviation of the rate constant estimate and the cumulative relative sensitivity of the neglected reactions was less than $0.5$ in all cases. Thus, for dynamical processes on complex networks, iteratively expanding a model by determining new parameters from data collected under specific conditions is unlikely to produce reliable results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源