论文标题

在GPU和CPU上探索用于负载平衡急切的K-Truss的细粒平行性的探索

Exploration of Fine-Grained Parallelism for Load Balancing Eager K-truss on GPU and CPU

论文作者

Blanco, Mark, Low, Tze Meng, Kim, Kyungjoo

论文摘要

在这项工作中,我们介绍了急切的K-Truss的性能探索,K-Truss是K-Truss图算法的线性代数公式。我们通过提出一种执行支持计算的精细粒度并行方法来解决与对称,三角形图中平行任务的负载不平衡有关的问题。这种方法还增加了可用的并行性,使其可容纳GPU执行。我们证明了使用Kokkos实现的细粒平行方法,并在Intel Skylake CPU和NVIDIA TESLA V100 GPU上对其进行评估。总体而言,我们观察到1.261。由于我们的细粒平行配方,CPU上的48倍改进,GPU的9.97-16.92倍改善。

In this work we present a performance exploration on Eager K-truss, a linear-algebraic formulation of the K-truss graph algorithm. We address performance issues related to load imbalance of parallel tasks in symmetric, triangular graphs by presenting a fine-grained parallel approach to executing the support computation. This approach also increases available parallelism, making it amenable to GPU execution. We demonstrate our fine-grained parallel approach using implementations in Kokkos and evaluate them on an Intel Skylake CPU and an Nvidia Tesla V100 GPU. Overall, we observe between a 1.261. 48x improvement on the CPU and a 9.97-16.92x improvement on the GPU due to our fine-grained parallel formulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源