论文标题
梯级无序的两腿量子自旋梯子的热性能:量子蒙特卡洛研究
Thermal Properties of Rung Disordered Two-leg Quantum Spin Ladders: Quantum Monte Carlo Study
论文作者
论文摘要
通过随机系列扩张(SSE)Quantum Monte Carlo(QMC)方法研究了两腿淬灭的随机键失调的抗铁磁自旋$ -1/2 $ -1/2 $ HEISENBERG LADDER系统。均匀和交错的敏感性,结构因子,比热和自旋间隙的热性能是在广泛的无序强度范围内的大量随机实现中计算的。根据我们的QMC仿真结果,所考虑的系统具有特殊的温度点,在该温度点上,无论疾病的强度如何,特定的热量都具有相同的值。此外,均匀的敏感性显示出显示相同的特征,除了特殊点位置的差异很小。最后,发现自旋间隙值随着障碍参数的增加而降低,并且本研究中发现的最小差距值远高于清洁情况的弱耦合极限。
A two-leg quenched random bond disordered antiferromagnetic spin$-1/2$ Heisenberg ladder system is investigated by means of stochastic series expansion (SSE) quantum Monte Carlo (QMC) method. Thermal properties of the uniform and staggered susceptibilities, the structure factor, the specific heat and the spin gap are calculated over a large number of random realizations in a wide range of disorder strength. According to our QMC simulation results, the considered system has a special temperature point at which the specific heat take the same value regardless of the strength of the disorder. Moreover, the uniform susceptibility is shown to display the same character except for a small difference in the location of the special point. Finally, the spin gap values are found to decrease with increasing disorder parameter and the smallest gap value found in this study is well above the weak coupling limit of the clean case.