论文标题

通过多通道相关的任意视频风格转移

Arbitrary Video Style Transfer via Multi-Channel Correlation

论文作者

Deng, Yingying, Tang, Fan, Dong, Weiming, Huang, Haibin, Ma, Chongyang, Xu, Changsheng

论文摘要

视频风格转移在AI社区中引起了其众多应用程序(例如增强现实和动画制作)的关注。与传统的图像样式转移相比,在视频上执行此任务提出了新的挑战:如何有效地为任何指定样式产生令人满意的风格化结果,并同时保持跨帧的时间连贯性。为此,我们提出了多通道校正网络(MCCNET),可以训练以融合示例样式功能和输入内容功能,以实现有效的样式传输,同时自然保持输入视频的连贯性。具体来说,MCCNET直接在样式和内容域的特征空间上工作,在该空间中,它根据其与内容功能的相似性来重新排列和融合样式功能。 MCC生成的输出是包含所需样式模式的功能,可以将其进一步解码为具有生动样式纹理的图像。此外,MCCNET还旨在将功能与输入明确对齐,以确保输出保持内容结构以及时间连续性。为了进一步提高MCCNET在复杂的光条件下的性能,我们还引入了训练期间的照明损失。定性和定量评估表明,MCCNET在任意视频和图像样式转移任务中的表现都很好。

Video style transfer is getting more attention in AI community for its numerous applications such as augmented reality and animation productions. Compared with traditional image style transfer, performing this task on video presents new challenges: how to effectively generate satisfactory stylized results for any specified style, and maintain temporal coherence across frames at the same time. Towards this end, we propose Multi-Channel Correction network (MCCNet), which can be trained to fuse the exemplar style features and input content features for efficient style transfer while naturally maintaining the coherence of input videos. Specifically, MCCNet works directly on the feature space of style and content domain where it learns to rearrange and fuse style features based on their similarity with content features. The outputs generated by MCC are features containing the desired style patterns which can further be decoded into images with vivid style textures. Moreover, MCCNet is also designed to explicitly align the features to input which ensures the output maintains the content structures as well as the temporal continuity. To further improve the performance of MCCNet under complex light conditions, we also introduce the illumination loss during training. Qualitative and quantitative evaluations demonstrate that MCCNet performs well in both arbitrary video and image style transfer tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源