论文标题

P边/顶点连接的顶点盖:参数化和近似算法

p-Edge/Vertex-Connected Vertex Cover: Parameterized and Approximation Algorithms

论文作者

Einarson, Carl, Gutin, Gregory, Jansen, Bart M. P., Majumdar, Diptapriyo, Wahlstrom, Magnus

论文摘要

我们介绍并研究了连接的Vertexcover(VC)问题的两个自然概括:$ p $ - 边缘连接和$ p $ - vertex相连的VC问题(其中$ p \ geq 2 $是固定整数)。像连接的VC一样,两个新的VC问题都是FPT,但是除非$ np \ subseteq conp/poly $,否则不承认多项式内核,这是极不可能的。但是,我们证明这两个问题都承认时间有效的多项式尺寸近似内核化方案。我们获得了$ O(2^{o(pk)} n^{o(1)})$ - $ p $ - 边缘连接的VC和$ o(2^{o(k^2)n^{o(1))$ - $ o(2^{o(k^2)} n^{o(1))$ - $ p $ - p $ -p $ - vertex-connnected vc vc。最后,我们描述了$ 2(p+1)$ - $ p $ - 边缘连接VC的近似算法。与连接的VC相比,新的VC问题的证明需要更多的复杂论证。特别是,对于近似算法,我们使用gomory-hu树和近似内核的结果,其结果跨越了$ p $ - vertex/edge-vertex/edge-ednect-inconted子图,$ p $ vertex/edgetex/edge-edge-connected图形由Nishizeki和Poljak(1994)以及Nagamochi和Nagamochi和1992(1992)独立地获得。

We introduce and study two natural generalizations of the Connected VertexCover (VC) problem: the $p$-Edge-Connected and $p$-Vertex-Connected VC problem (where $p \geq 2$ is a fixed integer). Like Connected VC, both new VC problems are FPT, but do not admit a polynomial kernel unless $NP \subseteq coNP/poly$, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. We obtain an $O(2^{O(pk)}n^{O(1)})$-time algorithm for the $p$-Edge-Connected VC and an $O(2^{O(k^2)}n^{O(1)})$-time algorithm for the $p$-Vertex-Connected VC. Finally, we describe a $2(p+1)$-approximation algorithm for the $p$-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning $p$-vertex/edge-connected subgraph of a $p$-vertex/edge-connected graph obtained independently by Nishizeki and Poljak (1994) and Nagamochi and Ibaraki (1992).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源