论文标题

通过贝叶斯优化利用森林库存抽样中的遥感数据

Utilizing remote sensing data in forest inventory sampling via Bayesian optimization

论文作者

Pohjankukka, Jonne, Tuominen, Sakari, Heikkonen, Jukka

论文摘要

在大面积森林库存中,需要取消要采样的数据数量和收集数据的成本之间的权衡。在处理基于抽样的库存时,并非总是有可能拥有很大的数据样本。因此,有必要优化采样设计,以实现最佳的总体参数估计。相反,与森林库存变量相关的遥感(RS)数据的可用性通常更高。 RS和采样现场测量数据的组合通常用于改善森林库存参数估计。此外,研究RS数据在库存抽样中的利用也是合理的,这可以进一步改善森林变量的估计。在这项研究中,我们提出了一种基于贝叶斯优化的数据采样方法,该方法在森林库存样本选择中使用RS数据。提出的方法在新的采样决策中应用了RS和库存数据之间学习的功能关系。我们通过使用合成数据和芬兰Aland地区的测量数据进行模拟采样实验来评估我们的方法。根据两种基线方法对所提出的方法进行了基准测试:简单的随机抽样和局部关键方法。当RS和库存数据之间的功能关系从可用的培训数据中正确学习时,模拟实验的结果显示了所提出方法的MSE值的最佳结果。

In large-area forest inventories a trade-off between the amount of data to be sampled and the costs of collecting the data is necessary. It is not always possible to have a very large data sample when dealing with sampling-based inventories. It is therefore necessary to optimize the sampling design in order to achieve optimal population parameter estimation. On the contrary, the availability of remote sensing (RS) data correlated with the forest inventory variables is usually much higher. The combination of RS and the sampled field measurement data is often used for improving the forest inventory parameter estimation. In addition, it is also reasonable to study the utilization of RS data in inventory sampling, which can further improve the estimation of forest variables. In this study, we propose a data sampling method based on Bayesian optimization which uses RS data in forest inventory sample selection. The presented method applies the learned functional relationship between the RS and inventory data in new sampling decisions. We evaluate our method by conducting simulated sampling experiments with both synthetic data and measured data from the Aland region in Finland. The proposed method is benchmarked against two baseline methods: simple random sampling and the local pivotal method. The results of the simulated experiments show the best results in terms of MSE values for the proposed method when the functional relationship between RS and inventory data is correctly learned from the available training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源