论文标题
通过高通量$^{28} $ si $^ - $ ion植入硅的同位素富集
Isotopic enrichment of silicon by high fluence $^{28}$Si$^-$ ion implantation
论文作者
论文摘要
硅28($^{28} $ si)的“半导体真空真空”中的旋转是合适的候选候选者,因为它们的相干时间很长。需要$^{28} $ si的同位素纯化的底物,以限制由$^{29} $ si核自旋(i = 1/2)引起的磁性扰动,以4.67%的含量为4.67%。我们通过使用高通量$^{28} $ SI $^ - $植入来溅射来富含Nat Si的表面层。磷(P)供体植入一个这样的$^{28} $ si层,〜3000 ppm $^{29} $ si,由30 kev $^{28} $ si $^ - $ ions植入30 kev $^{28} $ si $^ - $ ions以4x10^18 cm^-2的流动性,并以脉冲旋转量为单元,并以脉动旋转式旋转式,并取得了激活。 Hahn Echo信号的单指数衰减表明$^{29} $ SI的耗竭。提取T2 = 285 +/- 14的连贯性时间比Nat Si在类似掺杂浓度中获得的相干时间长,可以通过降低将来的P浓度来增加。通过使用45 kev $^{28} $ si $^ - $植入使用一对离子溅射来改善同位素富集。 2.63x10^18 cm^-2 $^{28} $ si $^ - $离子以这种能量植入Nat Si中,导致同位素富集的表面层〜100 nm厚;适用于植入近地表区域的供体量子位的$^{28} $ SI的足够体积。我们观察到$^{29} $ si至250 ppm的耗竭,这是通过次级离子质谱法测量的。讨论了通过固相外延的杂质含量和结晶动力学。 $^{28} $ SI层被确认为使用传输电子显微镜的单晶。这种Si同位素富集方法显示出有望纳入Si自旋量子设备的制造过程流动。
Spins in the `semiconductor vacuum' of silicon-28 ($^{28}$Si) are suitable qubit candidates due to their long coherence times. An isotopically purified substrate of $^{28}$Si is required to limit the decoherence pathway caused by magnetic perturbations from surrounding $^{29}$Si nuclear spins (I=1/2), present in natural Si (nat Si) at an abundance of 4.67%. We isotopically enrich surface layers of nat Si by sputtering using high fluence $^{28}$Si$^-$ implantation. Phosphorus (P) donors implanted into one such $^{28}$Si layer with ~3000 ppm $^{29}$Si, produced by implanting 30 keV $^{28}$Si$^-$ ions at a fluence of 4x10^18 cm^-2, were measured with pulsed electron spin resonance, confirming successful donor activation upon annealing. The mono-exponential decay of the Hahn echo signal indicates a depletion of $^{29}$Si. A coherence time of T2 = 285 +/- 14 us is extracted, which is longer than that obtained in nat Si for similar doping concentrations and can be increased by reducing the P concentration in future. The isotopic enrichment was improved by employing one-for-one ion sputtering using 45 keV $^{28}$Si$^-$ implantation. A fluence of 2.63x10^18 cm^-2 $^{28}$Si$^-$ ions were implanted at this energy into nat Si, resulting in an isotopically enriched surface layer ~100 nm thick; suitable for providing a sufficient volume of $^{28}$Si for donor qubits implanted into the near-surface region. We observe a depletion of $^{29}$Si to 250 ppm as measured by secondary ion mass spectrometry. The impurity content and the crystallization kinetics via solid phase epitaxy are discussed. The $^{28}$Si layer is confirmed to be a single crystal using transmission electron microscopy. This method of Si isotopic enrichment shows promise for incorporating into the fabrication process flow of Si spin qubit devices.