论文标题
关于嵌入ACHIRAL LEFSCHETZ纤维的注释
A note on embedding of achiral Lefschetz fibrations
论文作者
论文摘要
我们讨论了$ 4 $维度的Lefschetz纤维纤维,以$ 3 $二维的开放书籍进行研究,并以ghanwat-pancholi的缘故研究其固定在有限的$ 6 $尺寸的歧管中。作为一个申请,我们给出了另一个证明,证明每个可封闭的$ 4 $ - manifold嵌入$ s^2 \ times s^2 \ times s^2 $。我们还表明,每种具有过纤维单曲率的Achiral Lefschetz振动都承认嵌入$ d^6 = d^2 \ times d^4 $中的LF嵌入,并讨论了这种LF嵌入的障碍物。
We discuss $4$-dimensional achiral Lefschetz fibrations bounding $3$-dimensional open books and study their Lefschetz fibration (LF) embedding in a bounded $6$-dimensional manifold, in the sense of Ghanwat--Pancholi. As an application we give another proof of the fact that every closed orientable $4$-manifold embeds in $S^2 \times S^2 \times S^2$ . We also show that every achiral Lefschetz fibration with hyperelliptic monodromy admits LF embedding in $D^6 = D^2 \times D^4$ and discuss an obstruction to such LF embeddings.