论文标题
非线性双向介质中光涡流的随机运动理论
Random motion theory of an optical vortex in nonlinear birefringent media
论文作者
论文摘要
对非线性双向kerr效应固有的光学涡流的随机方面提出了一项理论研究,这称为光学自旋涡流。我们从两个组件的非线性schrödinger方程开始。涡旋是由介电张量的各向异性引起的自旋纹理固有的,旋转的作用由Stokes vector(或伪传)扮演。使用伪字场的有效拉格朗日为涡流中心坐标得出了进化方程。在波动的存在以及耗散的情况下,这将转换为Langevin方程。得出相应的fokker-Planck方程,并分析了从法拉第效应中启发的特定形式的双折射。主要结果是,分布函数的松弛距离是由法拉第效应和光涡流的大小中的通用常数表示。结果将为从随机方面的极化光学技术提供可能的实验研究提供可能的线索。
A theoretical study is presented for the random aspect of an optical vortex inherent in the nonlinear birefringent Kerr effect, which is called the optical spin vortex. We start with the two-component nonlinear Schrödinger equation. The vortex is inherent in the spin texture caused by an anisotropy of the dielectric tensor, for which the role of spin is played by the Stokes vector (or pseudospin). The evolutional equation is derived for the vortex center coordinate using the effective Lagrangian of the pseudospin field. This is converted to the Langevin equation in the presence of the fluctuation together with the dissipation. The corresponding Fokker-Planck equation is derived and analytically solved for a particular form of the birefringence inspired from the Faraday effect. The main consequence is that the relaxation distance for the distribution function is expressed by the universal constant in the Faraday effect and the size of optical vortex. The result would provide a possible clue for future experimental study in polarization optics from a stochastic aspect.