论文标题
指数度量的三重路径
Triple path to the exponential metric
论文作者
论文摘要
标量场诱导的指数帕帕普环帕帕普度量符合观察数据的符合度不比真空schwarzschild解决方案差。在这里,我们将该度量的起源分析为以标量电荷参数为参数的爱因斯坦方程的广泛的标量和抗体溶液中的特殊时空。概括了Fisher(1948),Janis,Newman&Winicour(1968)和Xanthopoulos&Zannias(1989)获得的三个静态解决方案家族,我们证明所有三个都将降低到相同的指数度量指标,前提是标量电荷等于中央质量,从而暗示了这种背景质量质量领域的通用特征。
The exponential Papapetrou metric induced by scalar field conforms to observational data not worse than the vacuum Schwarzschild solution. Here, we analyze the origin of this metric as a peculiar space-time within a wide class of scalar and antiscalar solutions of the Einstein equations parameterized by scalar charge. Generalizing the three families of static solutions obtained by Fisher (1948), Janis, Newman & Winicour (1968), and Xanthopoulos & Zannias (1989), we prove that all three reduce to the same exponential metric provided that scalar charge is equal to central mass, thereby suggesting the universal character of such background scalar field.