论文标题

关于定向的Oberwolfach问题,周期长度可变

On the Directed Oberwolfach Problem with variable cycle lengths

论文作者

Shabani, Elaheh, Šajna, Mateja

论文摘要

定向的Oberwolfach问题可以被视为著名的Oberwolfach问题的定向版本,Ringel于1967年在德国Oberwolfach的一次会议上首次提及。在本文中,我们描述了有关有指导性的Oberwolfach问题的一些新的部分结果,该结果具有可变周期长度的定向oberwolfach问题。特别是,我们表明完整的对称digraph $ k_n^{*} $接纳了$(\ vec {c} _2,...,\ vec {c} _2,\ vec {c} _3 _3)$ n \ equiv equiv 1,3,3,$ 7 \ equiv 1,3,$ 7 \ $ 7 \ pm pmod}我们还表明,$ k_n^{*} $接受$(\ vec {c} _2,\ vec {c} _ {n-2})$ - 分解任何整数$ n \ geq 5 $。

The Directed Oberwolfach Problem can be considered as the directed version of the well-known Oberwolfach Problem, first mentioned by Ringel at a conference in Oberwolfach, Germany in 1967. In this paper, we describe some new partial results on the Directed Oberwolfach Problem with variable cycle lengths. In particular, we show that the complete symmetric digraph $K_n^{*}$ admits a $( \vec{C}_2, ..., \vec{C}_2, \vec{C}_3) $-factorization for all $ n\equiv 1, 3,$ or $ 7\pmod{8}$. We also show that $K_n^{*}$ admits a $(\vec{C}_2, \vec{C}_{n-2})$-factorization for any integer $n \geq 5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源