论文标题

通过二阶复发公式分析Arimoto-blahut算法的收敛速度

Analysis of the Convergence Speed of the Arimoto-Blahut Algorithm by the Second Order Recurrence Formula

论文作者

Nakagawa, Kenji, Takei, Yoshinori, Hara, Shin-ichiro, Watabe, Kohei

论文摘要

在本文中,我们研究了Arimoto-blahut算法的收敛速度。对于许多通道矩阵,收敛是指数级的,但是对于某些通道矩阵,它比指数慢。通过分析Arimoto-blahut算法的定义功能的泰勒膨胀,我们将使指数或较慢的收敛条件清楚。在本文中,对缓慢收敛的分析是新的。基于分析,我们将在数值上比较Arimoto-blahut算法的收敛速度与在我们的定理中为几个通道矩阵获得的值进行比较。本文的目的是完全理解Arimoto-Blahut算法的收敛速度。

In this paper, we investigate the convergence speed of the Arimoto-Blahut algorithm. For many channel matrices the convergence is exponential, but for some channel matrices it is slower than exponential. By analyzing the Taylor expansion of the defining function of the Arimoto-Blahut algorithm, we will make the conditions clear for the exponential or slower convergence. The analysis of the slow convergence is new in this paper. Based on the analysis, we will compare the convergence speed of the Arimoto-Blahut algorithm numerically with the values obtained in our theorems for several channel matrices. The purpose of this paper is a complete understanding of the convergence speed of the Arimoto-Blahut algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源