论文标题

通过突触可塑性利用操作神经网络中的异质性

Exploiting Heterogeneity in Operational Neural Networks by Synaptic Plasticity

论文作者

Kiranyaz, Serkan, Malik, Junaid, Abdallah, Habib Ben, Ince, Turker, Iosifidis, Alexandros, Gabbouj, Moncef

论文摘要

最近提出的网络模型,操作神经网络(ONNS)可以概括仅具有线性神经元模型的同质质量卷积神经网络(CNN)。作为一种异源网络模型,ONNS基于广义神经元模型,该模型可以封装任何一组非线性操作员,以提高多样性,并学习具有最小网络复杂性和训练数据的高度复杂和多模式的功能或空间。但是,默认的搜索方法是在ONN中找到最佳操作员,即所谓的贪婪迭代搜索(GIS)方法,通常需要进行几个培训课程,以每层查找单个操作员集。这不仅是计算要求的,而且网络异质性也受到限制,因为然后将使用相同的一组运算符用于每一层中的所有神经元。为了解决这一缺陷并利用卓越的异质性水平,在这项研究中,重点是基于突触可塑性范式搜索网络隐藏神经元的最佳算子集,从而在生物神经元中提出了基本的学习理论。在训练过程中,可以通过其突触可塑性级别评估库中的每个操作员,从最差到最佳的排名,然后可以使用在每个隐藏层上找到的顶级运算符组来配置精英ONN。在高度挑战性问题上的实验结果表明,即使有很少的神经元和层次的精英ONN可以比基于GIS的ONN获得出色的学习表现,因此,CNNS上的性能差距进一步扩大。

The recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS) method, usually takes several training sessions to find a single operator set per layer. This is not only computationally demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an elite ONN can then be configured using the top ranked operator sets found at each hidden layer. Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs and as a result the performance gap over the CNNs further widens.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源