论文标题
拼车:通过配对昂贵和廉价的宇宙学模拟,快速,准确地计算大型结构统计
CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations
论文作者
论文摘要
为了利用下一代大规模结构调查的力量,必须进行数值模拟的集合,以给出可观察到的统计数据的准确理论预测。高保真模拟的高耸的计算成本。因此,近似但快速的模拟,代理,被广泛用于以引入模型误差的价格提高速度。我们提出了一种一般方法,该方法利用模拟和替代物之间的相关性来计算大规模结构可观察的大规模结构的快速,变化统计,而没有模型误差,只需几个模拟。我们将这种方法称为通过回归和合并(拼车)的收敛加速。在有意最小调整的数值实验中,我们将拼车应用于少数小配件$ n $ n $ n $模拟,并配对使用Comoving Lagrangian加速度(COLA)计算的替代物。我们发现$ \ sim 100 $ - 倍差异降低,即使在非线性制度中,最多可用于物质功率谱的$ k_ \ mathrm {max} \大约1.2 $ $ h {\ rm mpc^{ - 1}} $。 Cartool对Bispectrum实现了类似的改进。在几乎线性的状态下,拼车的样本差异降低较大。通过与Quijote Suite的15,000个模拟进行比较,我们验证了拼车估计是没有偏见的,即使构造的保证,代理人在高$ k $上错过了最高$ 60 \%$ $的模拟真相。此外,即使具有完全配置空间统计量(例如非线性物质密度密度密度函数),Carpool也可以达到无偏差的降低因子,最多可\ sim 10 $,而无需任何进一步的调整。相反,可以将拼车与快速替代的集合与一些高智能模拟结合使用来消除模型错误。
To exploit the power of next-generation large-scale structure surveys, ensembles of numerical simulations are necessary to give accurate theoretical predictions of the statistics of observables. High-fidelity simulations come at a towering computational cost. Therefore, approximate but fast simulations, surrogates, are widely used to gain speed at the price of introducing model error. We propose a general method that exploits the correlation between simulations and surrogates to compute fast, reduced-variance statistics of large-scale structure observables without model error at the cost of only a few simulations. We call this approach Convergence Acceleration by Regression and Pooling (CARPool). In numerical experiments with intentionally minimal tuning, we apply CARPool to a handful of GADGET-III $N$-body simulations paired with surrogates computed using COmoving Lagrangian Acceleration (COLA). We find $\sim 100$-fold variance reduction even in the non-linear regime, up to $k_\mathrm{max} \approx 1.2$ $h {\rm Mpc^{-1}}$ for the matter power spectrum. CARPool realises similar improvements for the matter bispectrum. In the nearly linear regime CARPool attains far larger sample variance reductions. By comparing to the 15,000 simulations from the Quijote suite, we verify that the CARPool estimates are unbiased, as guaranteed by construction, even though the surrogate misses the simulation truth by up to $60\%$ at high $k$. Furthermore, even with a fully configuration-space statistic like the non-linear matter density probability density function, CARPool achieves unbiased variance reduction factors of up to $\sim 10$, without any further tuning. Conversely, CARPool can be used to remove model error from ensembles of fast surrogates by combining them with a few high-accuracy simulations.