论文标题

AI研究中的问题以及SP系统如何帮助解决方案

Problems in AI research and how the SP System may help to solve them

论文作者

Wolff, J Gerard

论文摘要

本文描述了AI研究中的问题以及SP系统(附录中描述)如何有助于解决这些问题。大多数问题是由AI中的主要研究人员在接受科学作家马丁·福特(Martin Ford)的访谈中描述的,并在他的书中报道了他的书{\ em Intelligence}。这些问题是:需要弥合符号和非符号知识和处理之间的鸿沟;深度神经网络(DNNS)的趋势是在识别中犯大大而出乎意料的错误;需要加强自然语言的表示和处理;无监督学习的挑战;需要对概括的连贯说明;如何从一次曝光中学习可用的知识;如何实现转移学习;如何提高AI处理的效率;在AI结构和过程中需要透明度;如何实现各种概率推理;需要更加重视自上而下的策略;如何最大程度地减少自动驾驶车辆发生事故的风险;在AI知识中需要强大的组成性;常识性推理和常识性知识的挑战;在AI研究中确立信息压缩的重要性;在AI研究中确立生物学观点的重要性;确定大脑中的知识是以“分布式”或“本地主义”形式表示的;如何绕过深度神经网络中有限的适应范围;需要发展“广泛的AI”;以及如何消除灾难性遗忘的问题。

This paper describes problems in AI research and how the SP System (described in an appendix) may help to solve them. Most of the problems are described by leading researchers in AI in interviews with science writer Martin Ford, and reported by him in his book {\em Architects of Intelligence}. These problems are: the need to bridge the divide between symbolic and non-symbolic kinds of knowledge and processing; the tendency of deep neural networks (DNNs) to make large and unexpected errors in recognition; the need to strengthen the representation and processing of natural languages; the challenges of unsupervised learning; the need for a coherent account of generalisation; how to learn usable knowledge from a single exposure; how to achieve transfer learning; how to increase the efficiency of AI processing; the need for transparency in AI structures and processes; how to achieve varieties of probabilistic reasoning; the need for more emphasis on top-down strategies; how to minimise the risk of accidents with self-driving vehicles; the need for strong compositionality in AI knowledge; the challenges of commonsense reasoning and commonsense knowledge; establishing the importance of information compression in AI research; establishing the importance of a biological perspective in AI research; establishing whether knowledge in the brain is represented in `distributed' or `localist' form; how to bypassing the limited scope for adaptation in deep neural networks; the need to develop `broad AI'; and how to eliminate the problem of catastrophic forgetting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源