论文标题
一个简单有效的自我监督对比学习框架,用于方面检测
A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection
论文作者
论文摘要
无监督的方面检测(UAD)旨在自动提取可解释的方面并从在线评论中识别特定方面的细分(例如句子)。但是,最近基于深度学习的主题模型,特别是基于方面的自动编码器,遇到了几个问题,例如提取嘈杂的方面和模型发现的不良映射方面对感兴趣的方面。为了应对这些挑战,在本文中,我们首先提出了一个自我监督的对比学习框架,并为UAD任务配备了新颖的平滑自我注意力(SSA)模块,以便为方面学习更好的表示和审查段。其次,我们引入了高分辨率选择性映射(HRSMAP)方法,以有效地将模型发现的方面分配给感兴趣的各个方面。我们还建议使用知识蒸馏技术进一步提高方面检测性能。在公开可用的基准用户评论数据集上,我们的方法优于最近的几种无监督和弱监督的方法。方面解释结果表明,提取的方面有意义,具有良好的覆盖范围,并且可以轻松地映射到感兴趣的各个方面。消融研究和注意力体重的可视化还证明了SSA的有效性和知识蒸馏方法。
Unsupervised aspect detection (UAD) aims at automatically extracting interpretable aspects and identifying aspect-specific segments (such as sentences) from online reviews. However, recent deep learning-based topic models, specifically aspect-based autoencoder, suffer from several problems, such as extracting noisy aspects and poorly mapping aspects discovered by models to the aspects of interest. To tackle these challenges, in this paper, we first propose a self-supervised contrastive learning framework and an attention-based model equipped with a novel smooth self-attention (SSA) module for the UAD task in order to learn better representations for aspects and review segments. Secondly, we introduce a high-resolution selective mapping (HRSMap) method to efficiently assign aspects discovered by the model to aspects of interest. We also propose using a knowledge distilling technique to further improve the aspect detection performance. Our methods outperform several recent unsupervised and weakly supervised approaches on publicly available benchmark user review datasets. Aspect interpretation results show that extracted aspects are meaningful, have good coverage, and can be easily mapped to aspects of interest. Ablation studies and attention weight visualization also demonstrate the effectiveness of SSA and the knowledge distilling method.