论文标题
带有多域lingam的因果发现潜在因素
Causal Discovery with Multi-Domain LiNGAM for Latent Factors
论文作者
论文摘要
从观察到的数据中发现潜在因素之间的因果结构是一个特别具有挑战性的问题。尽管为此问题做了一些努力,但现有方法仅关注单域数据。在本文中,我们提出了用于潜在因素(MD-LINA)的多域线性非高斯无环模型,其中所有领域的潜在因素之间的因果结构在所有领域共享,我们提供了其识别结果。该模型丰富了多域数据的因果表示。我们提出了一种集成的两相算法来估计模型。特别是,我们首先找到潜在因素并估算因子加载矩阵。然后,为了揭示共享的潜在潜在因素之间的因果结构,我们根据外部影响之间的独立性关系以及多域潜在因素与感兴趣的潜在因素之间的独立性关系得出得分函数。我们表明该建议的方法提供了局部一致的估计器。合成和现实世界数据的实验结果证明了我们方法的功效和鲁棒性。
Discovering causal structures among latent factors from observed data is a particularly challenging problem. Despite some efforts for this problem, existing methods focus on the single-domain data only. In this paper, we propose Multi-Domain Linear Non-Gaussian Acyclic Models for Latent Factors (MD-LiNA), where the causal structure among latent factors of interest is shared for all domains, and we provide its identification results. The model enriches the causal representation for multi-domain data. We propose an integrated two-phase algorithm to estimate the model. In particular, we first locate the latent factors and estimate the factor loading matrix. Then to uncover the causal structure among shared latent factors of interest, we derive a score function based on the characterization of independence relations between external influences and the dependence relations between multi-domain latent factors and latent factors of interest. We show that the proposed method provides locally consistent estimators. Experimental results on both synthetic and real-world data demonstrate the efficacy and robustness of our approach.