论文标题

在d维充电黑洞中的不稳定性和无头发范式

Instability and no-hair paradigm in d-dimensional charged-AdS black holes

论文作者

Rahmani, Afsaneh, Khodadi, Mohsen, Honardoost, Matin, Sepangi, Hamid Reza

论文摘要

当黑洞发生不稳定时,是否有可能违反无头发范式?我们采用无带电的标量扰动,我们在共同不变的Einstein-Maxwell理论的背景下解决了这个问题,其中一些允许的$ D $数($ d = 4n+4 $,带有保形参数$ n = 0,1,2,... $)拓扑小广告黑洞。我们提供数值分析,以显示非琐碎的标量毛状黑洞解决方案,包括平面和球形地平线拓扑,在更高的维度中,具有均匀的共形参数$ n $。还表明,此处介绍的解决方案不能被视为Reissner-Nordstrom背景的标量头发。结果,对于$ d $ d $二维的小广告,黑洞在存在一个不变的麦克斯韦来源的情况下,似乎支持了无量表的头发范式。

Is it possible the no-hair paradigm is violated when a black hole undergoes an instability? Employing massless charged scalar perturbations, we address this question within the context of conformally invariant Einstein-Maxwell theory for some allowed $d$-dimensional ($d=4n+4$ with conformal parameter $n=0,1,2,...$ ) topological small AdS black-holes. We provide numerical analyses that show the non trivial scalar hairy black hole solutions to include planar and spherical horizon topologies in higher dimensions with an even conformal parameter $n$. It is also shown that the solutions presented here cannot be considered as scalar hairs for a Reissner-Nordstrom background. As a result, for $d$-dimensional small AdS black holes in the presence of a conformally invariant Maxwell source, the no-scalar hair paradigm seems to be supported.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源