论文标题

MS MARCO文档重新排行任务的longformer

Longformer for MS MARCO Document Re-ranking Task

论文作者

Sekulić, Ivan, Soleimani, Amir, Aliannejadi, Mohammad, Crestani, Fabio

论文摘要

两步文档排名,其中初始检索是通过经典信息检索方法完成的,其次是神经重新排列模型,是新标准。最好的性能是通过将基于变压器的模型作为重新级别(例如Bert)来实现的。我们在MARCO文档重新列入任务上使用Longformer,这是长期文档的类似于BERT的模型。用于培训的完整代码可以在以下网址找到:https://github.com/isekulic/longformer-marco

Two step document ranking, where the initial retrieval is done by a classical information retrieval method, followed by neural re-ranking model, is the new standard. The best performance is achieved by using transformer-based models as re-rankers, e.g., BERT. We employ Longformer, a BERT-like model for long documents, on the MS MARCO document re-ranking task. The complete code used for training the model can be found on: https://github.com/isekulic/longformer-marco

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源