论文标题
大规模处理系统中的吞吐量优化
On the Throughput Optimization in Large-Scale Batch-Processing Systems
论文作者
论文摘要
我们分析了一个具有$ n $客户端的数据处理系统,该系统生产作业,这些作业在\ textit {batches}中由$ m $并行服务器进行处理;系统吞吐量严重取决于批处理大小和相应的亚添加加速功能。实际上,吞吐量优化依赖于最佳批处理大小的数值搜索,该过程在现有商业系统中最多可能需要数天。在本文中,我们根据封闭的排队网络对系统进行建模;标准的马尔可夫分析在$ω\ left(n^4 \右)$时间中产生最佳吞吐量。我们的主要贡献是系统大小较大的系统系统的平均场模型。我们表明,平均场模型具有独特的全球固定点,可以以封闭形式找到,并以批处理大小的函数来表征系统的渐近吞吐量。使用此表达式,我们在$ o(1)$ time中找到\ textIt {渐近性}最佳吞吐量。来自大型商业系统的数值设置表明,这种渐近最佳的最佳设置在实际有限式方面是准确的。
We analyze a data-processing system with $n$ clients producing jobs which are processed in \textit{batches} by $m$ parallel servers; the system throughput critically depends on the batch size and a corresponding sub-additive speedup function. In practice, throughput optimization relies on numerical searches for the optimal batch size, a process that can take up to multiple days in existing commercial systems. In this paper, we model the system in terms of a closed queueing network; a standard Markovian analysis yields the optimal throughput in $ω\left(n^4\right)$ time. Our main contribution is a mean-field model of the system for the regime where the system size is large. We show that the mean-field model has a unique, globally attractive stationary point which can be found in closed form and which characterizes the asymptotic throughput of the system as a function of the batch size. Using this expression we find the \textit{asymptotically} optimal throughput in $O(1)$ time. Numerical settings from a large commercial system reveal that this asymptotic optimum is accurate in practical finite regimes.