论文标题
通过源引导的伪标记,对人重新识别的无监督领域适应
Unsupervised Domain Adaptation for Person Re-Identification through Source-Guided Pseudo-Labeling
论文作者
论文摘要
人重新识别(RE-ID)旨在检索不同摄像机拍摄的同一人的图像。重新ID的一个挑战是,当在感兴趣的数据(目标数据)上使用模型时的性能保存,该模型属于培训数据域(源数据)的不同域(源数据)。无监督的域适应性(UDA)是这一挑战的有趣研究方向,因为它避免了目标数据的昂贵注释。伪标记方法在基于UDA的RE-ID中取得了最佳结果。令人惊讶的是,在此初始化步骤之后,将标记的源数据丢弃。但是,我们认为伪标记可以进一步利用标记的源数据,以改善初始化训练步骤。为了提高针对错误的伪标签的鲁棒性,我们主张在所有训练期间对标记的源数据和伪标记的目标数据进行剥削。为了支持我们的准则,我们引入了一个框架,该框架依赖于两个分支的架构优化分类和基于三重态损失的度量范围的度量域中的指标学习,以便允许\ emph {适应目标域},同时确保\ emph {鲁棒性{鲁棒性{鲁棒性{实际上,共享的低和中级参数受益于源分类和三重态损耗信号,而目标分支的高级参数学习特定于域的特征。我们的方法足够简单,可以轻松与现有的伪标记的UDA方法结合使用。我们从实验上表明,当基本方法没有处理伪标签噪声或用于硬适应任务的机制时,它是有效的,并且可以提高性能。当在常用的数据集,Market-1501和Dukemtmc-Reid上评估时,我们的方法达到了最先进的性能,并且在针对更大,更具挑战性的数据集MSMT时,可以超越最先进的状态。
Person Re-Identification (re-ID) aims at retrieving images of the same person taken by different cameras. A challenge for re-ID is the performance preservation when a model is used on data of interest (target data) which belong to a different domain from the training data domain (source data). Unsupervised Domain Adaptation (UDA) is an interesting research direction for this challenge as it avoids a costly annotation of the target data. Pseudo-labeling methods achieve the best results in UDA-based re-ID. Surprisingly, labeled source data are discarded after this initialization step. However, we believe that pseudo-labeling could further leverage the labeled source data in order to improve the post-initialization training steps. In order to improve robustness against erroneous pseudo-labels, we advocate the exploitation of both labeled source data and pseudo-labeled target data during all training iterations. To support our guideline, we introduce a framework which relies on a two-branch architecture optimizing classification and triplet loss based metric learning in source and target domains, respectively, in order to allow \emph{adaptability to the target domain} while ensuring \emph{robustness to noisy pseudo-labels}. Indeed, shared low and mid-level parameters benefit from the source classification and triplet loss signal while high-level parameters of the target branch learn domain-specific features. Our method is simple enough to be easily combined with existing pseudo-labeling UDA approaches. We show experimentally that it is efficient and improves performance when the base method has no mechanism to deal with pseudo-label noise or for hard adaptation tasks. Our approach reaches state-of-the-art performance when evaluated on commonly used datasets, Market-1501 and DukeMTMC-reID, and outperforms the state of the art when targeting the bigger and more challenging dataset MSMT.