论文标题
降低除数和科瓦列夫斯基顶
Reduction of divisors and Kowalevski top
论文作者
论文摘要
在Kowalevski顶部的现代理论中,Kowalevski和Reyman和Semenov-Tian-Shansky引入了两条椭圆曲线。 Baker-Akhiezer功能的分离和极线的Kowalevski变量定义了两类在这些椭圆曲线上的线性等效分隔线。根据Riemann-Roch定理,每个类都有一个独特的代表,我们为Kowalevski Top构建了这种减少的除数。
In the modern theory of the Kowalevski top there are two elliptic curves introduced by Kowalevski and by Reyman and Semenov-Tian-Shansky. The Kowalevski variables of separation and poles of the Baker-Akhiezer function define two classes of linearly equivalent divisors on these elliptic curves. According to the Riemann-Roch theorem each class has a unique reduced representative and we construct such reduced divisors for the Kowalevski top.