论文标题

降低除数和科瓦列夫斯基顶

Reduction of divisors and Kowalevski top

论文作者

Tsiganov, A. V.

论文摘要

在Kowalevski顶部的现代理论中,Kowalevski和Reyman和Semenov-Tian-Shansky引入了两条椭圆曲线。 Baker-Akhiezer功能的分离和极线的Kowalevski变量定义了两类在这些椭圆曲线上的线性等效分隔线。根据Riemann-Roch定理,每个类都有一个独特的代表,我们为Kowalevski Top构建了这种减少的除数。

In the modern theory of the Kowalevski top there are two elliptic curves introduced by Kowalevski and by Reyman and Semenov-Tian-Shansky. The Kowalevski variables of separation and poles of the Baker-Akhiezer function define two classes of linearly equivalent divisors on these elliptic curves. According to the Riemann-Roch theorem each class has a unique reduced representative and we construct such reduced divisors for the Kowalevski top.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源