论文标题

居里:用于概念漂移检测的蜂窝自动机

CURIE: A Cellular Automaton for Concept Drift Detection

论文作者

Lobo, Jesus L., Del Ser, Javier, Osaba, Eneko, Bifet, Albert, Herrera, Francisco

论文摘要

数据流挖掘从快速,连续流动的大量数据中提取信息(数据流)。它们通常受数据分布变化的影响,从而导致一种称为概念漂移的现象。因此,学习模型必须检测并适应此类变化,以在发生漂移后表现出良好的预测性能。在这方面,有效漂移检测算法的开发成为数据流挖掘的关键因素。在这项工作中,我们提出了依靠细胞自动机的漂移检测器Cu Rie。具体而言,在Cu rie中,数据流的分布在蜂窝自动机的网格中表示,然后可以利用其邻域规则检测到流对流的可能分布变化。对计算机模拟进行了介绍和讨论,以表明Cu Rie与其他基本学习者杂交时,就检测指标和分类准确性方面具有竞争性行为。将Cu Rie与具有不同漂移特性不同的合成数据集的良好的漂移探测器进行了比较。

Data stream mining extracts information from large quantities of data flowing fast and continuously (data streams). They are usually affected by changes in the data distribution, giving rise to a phenomenon referred to as concept drift. Thus, learning models must detect and adapt to such changes, so as to exhibit a good predictive performance after a drift has occurred. In this regard, the development of effective drift detection algorithms becomes a key factor in data stream mining. In this work we propose CU RIE, a drift detector relying on cellular automata. Specifically, in CU RIE the distribution of the data stream is represented in the grid of a cellular automata, whose neighborhood rule can then be utilized to detect possible distribution changes over the stream. Computer simulations are presented and discussed to show that CU RIE, when hybridized with other base learners, renders a competitive behavior in terms of detection metrics and classification accuracy. CU RIE is compared with well-established drift detectors over synthetic datasets with varying drift characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源