论文标题

Newell-littlewood数字II:扩展的号角不平等现象

Newell-Littlewood numbers II: extended Horn inequalities

论文作者

Gao, Shiliang, Orelowitz, Gidon, Yong, Alexander

论文摘要

Newell-littlewood Number $ n_ {μ,ν,λ} $是稳定限制的经典谎言组的Weyl模块的张量产物。对于哪些分区的三元组$(μ,ν,λ)$ $ n_ {μ,ν,λ}> 0 $保持? Littlewood-Richardson系数案例是通过Horn不等式解决的(在A. Klyachko和A. Knutson-T。Tao的工作中)。我们将这些著名的线性不平等扩展到一个更大的家庭,这暗示了一般的解决方案。

The Newell-Littlewood numbers $N_{μ,ν,λ}$ are tensor product multiplicities of Weyl modules for classical Lie groups, in the stable limit. For which triples of partitions $(μ,ν,λ)$ does $N_{μ,ν,λ}>0$ hold? The Littlewood-Richardson coefficient case is solved by the Horn inequalities (in work of A. Klyachko and A. Knutson-T. Tao). We extend these celebrated linear inequalities to a much larger family, suggesting a general solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源