论文标题

超越身份:在生物识别面模板中存储哪些信息?

Beyond Identity: What Information Is Stored in Biometric Face Templates?

论文作者

Terhörst, Philipp, Fährmann, Daniel, Damer, Naser, Kirchbuchner, Florian, Kuijper, Arjan

论文摘要

深度学习的面部表征使当前的面部识别系统成功。尽管这些表示形式能够编码个人的身份,但最近的作品表明,更多的信息存储在其中,例如人口统计学,图像特征和社会特征。这威胁了用户的隐私,因为对于许多应用程序,这些模板应仅用于识别目的。了解面部模板中编码的信息有助于发展偏见和保护隐私的面部识别技术。这项工作旨在通过分析有关113个属性的面部模板来支持这两个分支的开发。在两个公开的面部嵌入方式上进行了实验。为了评估属性的可预测性,我们训练了一个庞大的属性分类器,该分类器还可以准确地陈述其预测置信度。这使我们能够对属性可预测性做出更复杂的陈述。结果表明,可以从面部模板中准确预测多达74个属性。尤其是非永久属性,例如年龄,发型,发型,胡须和各种配件,发现很容易预测。由于面部识别系统旨在与这些变化保持强大的态度,因此未来的研究可能在这项工作的基础上建立在这项工作的基础上,以开发更容易理解的隐私解决方案,并建立坚固而公平的面部模板。

Deeply-learned face representations enable the success of current face recognition systems. Despite the ability of these representations to encode the identity of an individual, recent works have shown that more information is stored within, such as demographics, image characteristics, and social traits. This threatens the user's privacy, since for many applications these templates are expected to be solely used for recognition purposes. Knowing the encoded information in face templates helps to develop bias-mitigating and privacy-preserving face recognition technologies. This work aims to support the development of these two branches by analysing face templates regarding 113 attributes. Experiments were conducted on two publicly available face embeddings. For evaluating the predictability of the attributes, we trained a massive attribute classifier that is additionally able to accurately state its prediction confidence. This allows us to make more sophisticated statements about the attribute predictability. The results demonstrate that up to 74 attributes can be accurately predicted from face templates. Especially non-permanent attributes, such as age, hairstyles, haircolors, beards, and various accessories, found to be easily-predictable. Since face recognition systems aim to be robust against these variations, future research might build on this work to develop more understandable privacy preserving solutions and build robust and fair face templates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源