论文标题

在社区网络上的人口游戏中的模仿动态

Imitation dynamics in population games on community networks

论文作者

Como, Giacomo, Fagnani, Fabio, Zino, Lorenzo

论文摘要

我们研究了网络上人群游戏的确定性,连续时间模仿动态的渐近行为。这种学习机制的基本假设 - 涵盖复制器动力学 - 是通过成对互动属于单个人群交换信息的玩家,从而使他们意识到其他玩家和相应的奖励的动作。使用这些信息,他们可以修改他们当前的行动,模仿与他们互动的玩家之一。调节学习过程的相互作用模式取决于社区结构。首先,表征了此类网络模仿动力学的一组平衡点。其次,对于潜在游戏类别以及无方向性和连接的社区网络,全球渐近融合已被证明。特别是,在特殊情况下,当NASH均衡是分离并完全支持的情况下,我们的结果可以保证与每个完全支持的初始人口状态的收敛到NASH平衡。提供了示例和数值模拟来验证理论结果,并在未验证社区结构的假设时讨论了场景的反例。

We study the asymptotic behavior of deterministic, continuous-time imitation dynamics for population games over networks. The basic assumption of this learning mechanism -- encompassing the replicator dynamics -- is that players belonging to a single population exchange information through pairwise interactions, whereby they get aware of the actions played by the other players and the corresponding rewards. Using this information, they can revise their current action, imitating the one of the players they interact with. The pattern of interactions regulating the learning process is determined by a community structure. First, the set of equilibrium points of such network imitation dynamics is characterized. Second, for the class of potential games and for undirected and connected community networks, global asymptotic convergence is proved. In particular, our results guarantee convergence to a Nash equilibrium from every fully supported initial population state in the special case when the Nash equilibria are isolated and fully supported. Examples and numerical simulations are offered to validate the theoretical results and counterexamples are discussed for scenarios when the assumptions on the community structure are not verified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源