论文标题
辫子小组的小商
Small Quotients of Braid Groups
论文作者
论文摘要
我们证明,对称组$ s_n $是$ n = 5,6 $的编织组$ b_n $的最小的非环保商,而交替的组$ a_n $是$ n = 5,6,7,7,7,7,7,7,8 $的交替$ a_n $。我们还对任何$ b_n $的非环保商的顺序进行了改进的下限。
We prove that the symmetric group $S_n$ is the smallest non-cyclic quotient of the braid group $B_n$ for $n=5,6$ and that the alternating group $A_n$ is the smallest non-trivial quotient of the commutator subgroup $B_n'$ for $n = 5,6,7,8$. We also give an improved lower bound on the order of any non-cyclic quotient of $B_n$.