论文标题

输出反馈模型预测控制和在线身份证明

Output-Feedback Model Predictive Control with Online Identification

论文作者

Nguyen, Tam W., Islam, Syed Aseem Ul, Bernstein, Dennis S., Kolmanovsky, Ilya V.

论文摘要

模型预测控制(MPC)是一种广泛使用的现代控制技术,在不同领域有许多成功的应用。这一成功的很大程度上是由于MPC强制执行状态和控制约束的能力,这在许多控制应用中至关重要。为了避免对观察者的需求,输出反馈模型预测控制具有在线识别(OFMPCOI)使用可观察的规范形式,该状态由控制输入和测量输出的过去值组成。使用递归最小二乘(RLS)进行在线标识,并具有可变速率遗忘。文章介绍了MPCOI的算法细节,并通过数值示例集来研究其性能,这些示例突出了各种控制挑战,例如模型订购不确定性,传感器噪声,预测范围,稳定范围,稳定度,大小和移动量量饱和和稳定。数值示例用于根据持久性,一致性和紧急情况来探测MPCOI的性能。由于OFMPCOI不使用单独的控制扰动来增强持久性,因此重点是在瞬态操作过程中自我生成的持久性。对于使用RLS的闭环识别,传感器噪声在已确定的模型中产生偏差,目标是确定缺乏一致性的影响。最后,数值示例揭示了紧急情况,这是在线标识强调与达到绩效目标最相关的模型特征的程度。

Model predictive control (MPC) is a widely used modern control technique with numerous successful application in diverse areas. Much of this success is due to the ability of MPC to enforce state and control constraints, which are crucial in many applications of control. In order to avoid the need for an observer, output-feedback model predictive control with online identification (OFMPCOI) uses the block observable canonical form whose state consists of past values of the control inputs and measured outputs. Online identification is performed using recursive least squares (RLS) with variable-rate forgetting. The article describes the algorithmic details of OFMPCOI and numerically investigates its performance through a collection of numerical examples that highlight various control challenges, such as model order uncertainty, sensor noise, prediction horizon, stabilization, magnitude and move-size saturation, and stabilization. The numerical examples are used to probe the performance of OFMPCOI in terms of persistency, consistency, and exigency. Since OFMPCOI does not employ a separate control perturbation to enhance persistency, the focus is on self-generated persistency during transient operation. For closed-loop identification using RLS, sensor noise gives rise to bias in the identified model, and the goal is to determine the effect of the lack of consistency. Finally, the numerical examples reveal exigency, which is the extent to which the online identification emphasizes model characteristics that are most relevant to meeting performance objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源