论文标题

我的推文将所有特征带入院子:在线社交网络中预测个性和关系特征

My tweets bring all the traits to the yard: Predicting personality and relational traits in Online Social Networks

论文作者

Karanatsiou, Dimitra, Sermpezis, Pavlos, Gruda, Jon, Kafetsios, Konstantinos, Dimitriadis, Ilias, Vakali, Athena

论文摘要

在线社交网络(OSN)中的用户留下了反映其性格特征的痕迹。这些痕迹的研究对于许多领域,例如社会科学,心理学,OSN,营销等重要。尽管基于在线行为基于在线行为的人格预测的研究明显增加,但重点一直在很大程度上忽略了个性的关系方面。这项研究旨在通过为OSN中的整体人格分析提供预测模型来解决这一差距,其中包括社会相关特征(依恋取向)与标准人格特征结合使用。具体来说,我们首先设计了一种功能工程方法,该方法可以从用户的OSN帐户中提取广泛的功能(对行为,语言和情感)。然后,我们设计了一个机器学习模型,该模型可以根据提取的功能预测用户心理特征的分数。所提出的模型架构的灵感来自心理理论中嵌入的特征,即利用人格方面之间的相互关系,并且与艺术方法相比,相比之下,精度提高了准确性。为了证明这种方法的有用性,我们将模型应用于两个数据集,一个随机的OSN用户和一个组织领导者,并比较了他们的心理概况。我们的发现表明,只有使用他们的心理概况可以清楚地分开这两组,这为OSN用户表征和分类的未来研究打开了有希望的方向。

Users in Online Social Networks (OSN) leaves traces that reflect their personality characteristics. The study of these traces is important for a number of fields, such as a social science, psychology, OSN, marketing, and others. Despite a marked increase on research in personality prediction on based on online behavior the focus has been heavily on individual personality traits largely neglecting relational facets of personality. This study aims to address this gap by providing a prediction model for a holistic personality profiling in OSNs that included socio-relational traits (attachment orientations) in combination with standard personality traits. Specifically, we first designed a feature engineering methodology that extracts a wide range of features (accounting for behavior, language, and emotions) from OSN accounts of users. Then, we designed a machine learning model that predicts scores for the psychological traits of the users based on the extracted features. The proposed model architecture is inspired by characteristics embedded in psychological theory, i.e, utilizing interrelations among personality facets, and leads to increased accuracy in comparison with the state of the art approaches. To demonstrate the usefulness of this approach, we applied our model to two datasets, one of random OSN users and one of organizational leaders, and compared their psychological profiles. Our findings demonstrate that the two groups can be clearly separated by only using their psychological profiles, which opens a promising direction for future research on OSN user characterization and classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源