论文标题
对耐力空间和分析功能的其他空间的新表征
A new characterization of the Hardy space and of other spaces of analytic functions
论文作者
论文摘要
可以将Fock空间表征(直至正乘因子)是整个功能的唯一希尔伯特空间,在该功能中,派生的伴随是通过复杂变量乘法的。类似地(仍然达到正乘因子),耐力空间是在开放单元磁盘中唯一的函数分析空间,后者向后移动操作员的伴随是乘法运算符。在本文中,我们表征了分化操作员伴随的范围。我们使用复制核方法,这似乎还给出了Fock空间的新表征。
The Fock space can be characterized (up to a positive multiplicative factor) as the only Hilbert space of entire functions in which the adjoint of derivation is multiplication by the complex variable. Similarly (and still up to a positive multiplicative factor) the Hardy space is the only space of functions analytic in the open unit disk for which the adjoint of the backward shift operator is the multiplication operator. In the present paper we characterize the Hardy space in term of the adjoint of the differentiation operator. We use reproducing kernel methods, which seem to also give a new characterization of the Fock space.