论文标题
三重杂货积分的KP集成性。 ii。广义kontsevich矩阵模型
KP integrability of triple Hodge integrals. II. Generalized Kontsevich matrix model
论文作者
论文摘要
在本文中,我们介绍了KP Tau功能的新家庭。可以通过广义kontsevich矩阵模型的变形来描述这个家族。我们证明,该家族的最简单代表描述了满足Calabi-yau条件的立方霍奇积分的生成功能,并声称整个家庭描述了其对较高自旋案例的概括。为了调查这个家庭,我们根据一对Kac-Schwarz运营商的规范构建了Sato Grassmannian的新描述。
In this paper we introduce a new family of the KP tau-functions. This family can be described by a deformation of the generalized Kontsevich matrix model. We prove that the simplest representative of this family describes a generating function of the cubic Hodge integrals satisfying the Calabi-Yau condition, and claim that the whole family describes its generalization for the higher spin cases. To investigate this family we construct a new description of the Sato Grassmannian in terms of a canonical pair of the Kac-Schwarz operators.