论文标题
事件数据的无监督功能学习:直接与逆问题配方
Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation
论文作者
论文摘要
基于事件的摄像机记录了每个像素亮度变化的异步流。因此,它们比基于标准的基于框架的相机具有许多优势,包括高时间分辨率,高动态范围和无运动模糊。由于异步性质,对事件数据的紧凑表示有效学习是具有挑战性的。尽管仍然没有探索空间和时间事件的“信息”的程度,可用于模式识别任务。在本文中,我们专注于单层体系结构。我们分析了两个常规问题公式的性能:直接和反向,用于从本地事件数据(时空中描述的事件的局部卷)中进行无监督的特征学习。我们识别并显示每种方法的主要优势。从理论上讲,我们分析了最佳解决方案,异步,并行参数更新的可能性以及计算复杂性的保证。我们提出了用于对象识别的数值实验。我们在直接和反问题下评估解决方案,并与最先进的方法进行比较。我们的经验结果凸显了从事件数据进行表示的两种方法的优势。与同一类方法的最先进方法相比,我们在识别精度中显示了多达9%的提高。
Event-based cameras record an asynchronous stream of per-pixel brightness changes. As such, they have numerous advantages over the standard frame-based cameras, including high temporal resolution, high dynamic range, and no motion blur. Due to the asynchronous nature, efficient learning of compact representation for event data is challenging. While it remains not explored the extent to which the spatial and temporal event "information" is useful for pattern recognition tasks. In this paper, we focus on single-layer architectures. We analyze the performance of two general problem formulations: the direct and the inverse, for unsupervised feature learning from local event data (local volumes of events described in space-time). We identify and show the main advantages of each approach. Theoretically, we analyze guarantees for an optimal solution, possibility for asynchronous, parallel parameter update, and the computational complexity. We present numerical experiments for object recognition. We evaluate the solution under the direct and the inverse problem and give a comparison with the state-of-the-art methods. Our empirical results highlight the advantages of both approaches for representation learning from event data. We show improvements of up to 9 % in the recognition accuracy compared to the state-of-the-art methods from the same class of methods.