论文标题

一个简单的$(2+ε)$ - 拆分顶点删除的近似算法

A simple $(2+ε)$-approximation algorithm for Split Vertex Deletion

论文作者

Drescher, Matthew, Fiorini, Samuel, Huynh, Tony

论文摘要

拆分图是一个图形,其顶点集可以分为一个集团和稳定的集合。给定图形$ g $和权重函数$ w:v(g)\ to \ mathbb {q} _ {\ geq 0} $,拆分顶点删除(svd)问题要求找到最小重量的顶点$ x $,这样$ g-x $是一个拆分图。很容易证明图形是一个拆分图,只有它不包含$ 4 $循环,$ 5 $循环或作为诱导子图的两边匹配。因此,SVD承认了一个简单的$ 5 $ APPRXIMATION算法。另一方面,对于每$δ> 0 $,SVD不承认$(2-δ)$ - 近似算法,除非p = np或独特的游戏猜想失败。 对于SVD的每一个$ε> 0 $,Lokshtanov,Misra,Panolan,Philip和Saurabh最近提供了一个随机的$(2+ε)$ - 近似算法。在这项工作中,我们为SVD提供了一种非常简单的确定性$(2+ε)$ - 近似算法。

A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph $G$ and weight function $w: V(G) \to \mathbb{Q}_{\geq 0}$, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices $X$ such that $G-X$ is a split graph. It is easy to show that a graph is a split graph if and only it it does not contain a $4$-cycle, $5$-cycle, or a two edge matching as an induced subgraph. Therefore, SVD admits an easy $5$-approximation algorithm. On the other hand, for every $δ>0$, SVD does not admit a $(2-δ)$-approximation algorithm, unless P=NP or the Unique Games Conjecture fails. For every $ε>0$, Lokshtanov, Misra, Panolan, Philip, and Saurabh recently gave a randomized $(2+ε)$-approximation algorithm for SVD. In this work we give an extremely simple deterministic $(2+ε)$-approximation algorithm for SVD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源