论文标题
通用的langevin方程和电气和磁场中粒子托管系统的波动定理
Generalized Langevin equations and fluctuation-dissipation theorem for particle-bath systems in electric and magnetic fields
论文作者
论文摘要
当系统放置在磁场或电场中时,考虑将浸入带电颗粒介质的粒子的布朗运动。来自Zwanzig-Caldeira-Legget粒子浴模型,我们对其进行了修改,以便不仅有带电的布朗粒子(BP),而且浴缸颗粒也对外部田地响应。对于固定系统,广义的langevin方程是得出的。任意时间依赖的电场不影响记忆函数,热噪声力和BP速度相关功能。在恒定磁场的情况下,在平面垂直于该场的平面中获得了具有不同内存函数的两个方程。与以前的理论不同,随机热力取决于场的大小。它的时间相关函数通过熟悉的第二次波动 - 脉络定理连接到找到的内存函数之一。
The Brownian motion of a particle immersed in a medium of charged particles is considered when the system is placed in magnetic or electric fields. Coming from the Zwanzig-Caldeira-Legget particle-bath model, we modify it so that not only the charged Brownian particle (BP) but also the bath particles respond to the external fields. For stationary systems the generalized Langevin equations are derived. Arbitrarily time-dependent electric fields do not affect the memory functions, the thermal noise force, and the BP velocity correlation functions. In the case of a constant magnetic field two equations with different memory functions are obtained for the BP motion in the plane perpendicular to the field. As distinct from the previous theories, the random thermal force depends on the field magnitude. Its time correlation function is connected with one of the found memory functions through the familiar second fluctuation-dissipation theorem.