论文标题

基于图形的平滑平滑而无基质反转以高度精确的定位

Factor Graph-Based Smoothing Without Matrix Inversion for Highly Precise Localization

论文作者

Chauchat, Paul, Barrau, Axel, Bonnabel, Silvère

论文摘要

我们考虑使用来自车辆传感器的信息,在环境中定位载人,半自治或自动驾驶汽车的问题,该问题根据上下文而被称为导航或同时定位和映射(SLAM)。为了从传感器的测量值中推断知识,在利用有关车辆动态的先验知识的同时,现代方法解决了优化问题,以计算所有过去观察到的最可能的轨迹,即一种称为平滑的方法。改善平滑求解器是大满贯社区的积极研究领域。大多数工作都集中在减少涉及的线性系统的同时保留其稀疏性的同时减少计算负载。本文提出了一个问题,据作者了解,尚未解决:标准平滑求解器需要使用传感器噪声协方差矩阵明确地使用倒数。这意味着反映噪声幅度的参数必须足够大,以使其更光滑才能正常运行。当矩阵接近单数时,当使用高精度的现代惯性测量单元(IMU)时,情况就是这种情况,数值问题必然会出现,尤其是大多数工业航空航天应用要求实施的32位实施。我们讨论这些问题,并提出了一种基于卡尔曼过滤器以改善平滑算法的解决方案。然后,我们利用结果来设计基于IMU和视觉传感器融合的本地化算法。成功使用配备了战术级高性能IMU和LIDAR的实际汽车进行的实际实验说明了与自动驾驶汽车领域的相关性。

We consider the problem of localizing a manned, semi-autonomous, or autonomous vehicle in the environment using information coming from the vehicle's sensors, a problem known as navigation or simultaneous localization and mapping (SLAM) depending on the context. To infer knowledge from sensors' measurements, while drawing on a priori knowledge about the vehicle's dynamics, modern approaches solve an optimization problem to compute the most likely trajectory given all past observations, an approach known as smoothing. Improving smoothing solvers is an active field of research in the SLAM community. Most work is focused on reducing computation load by inverting the involved linear system while preserving its sparsity. The present paper raises an issue which, to the knowledge of the authors, has not been addressed yet: standard smoothing solvers require explicitly using the inverse of sensor noise covariance matrices. This means the parameters that reflect the noise magnitude must be sufficiently large for the smoother to properly function. When matrices are close to singular, which is the case when using high precision modern inertial measurement units (IMU), numerical issues necessarily arise, especially with 32-bits implementation demanded by most industrial aerospace applications. We discuss these issues and propose a solution that builds upon the Kalman filter to improve smoothing algorithms. We then leverage the results to devise a localization algorithm based on fusion of IMU and vision sensors. Successful real experiments using an actual car equipped with a tactical grade high performance IMU and a LiDAR illustrate the relevance of the approach to the field of autonomous vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源