论文标题
$ \ mathcal {n} = 4 $ sym中的代数,迹线和边界相关器
Algebras, traces, and boundary correlators in $\mathcal{N}=4$ SYM
论文作者
论文摘要
我们在4D $ \ Mathcal {n} = 4 $ super yang-mills中研究了半bps边界和界面的超对称扇区,该扇区的量规组$ g $,由配备有扭曲轨迹的协会代数描述。此类数据与无限的缺陷相关函数一对一对应。我们确定已知边界条件的代数和迹线。表达痕迹(扭曲的)周期性的病房身份高度限制了其结构,在许多情况下允许完整的解决方案。本文中我们的主要示例是:带有描述dirichlet边界条件的迹线的通用包络代数$ u(\ mathfrak {g})$;和有限的W-Algebra $ \ Mathcal {W}(\ Mathfrak {G},T _+)$,描述了NAHM POL边界条件的跟踪。
We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $\mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspondence with an infinite set of defect correlation functions. We identify algebras and traces for known boundary conditions. Ward identities expressing the (twisted) periodicity of the trace highly constrain its structure, in many cases allowing for the complete solution. Our main examples in this paper are: the universal enveloping algebra $U(\mathfrak{g})$ with the trace describing the Dirichlet boundary conditions; and the finite W-algebra $\mathcal{W}(\mathfrak{g},t_+)$ with the trace describing the Nahm pole boundary conditions.