论文标题
$ \ mathbb {z}/n \ mathbb {z} $之间有限的欧几里得几何形状与对称子集之间的组合对应关系
A combinatorial correspondence between finite Euclidean geometries and symmetric subsets of $\mathbb{Z}/n\mathbb{Z}$
论文作者
论文摘要
$ Q $ - 数学数量的动物涉及使用参数$ Q $的经典数量扰动,并在$ Q $ $ Q $ $ 1 $时还原为原始数量。一个重要的例子是二项式系数的$ q $ - 分析,这些系数在$ \ mathbb {f} _ {q}^}^{n} $中提供$ k $二维子空间的数量。当$ Q $达到$ 1 $时,这将恢复为二项式系数,这些系数测量了$ k $ set的$ \ weft [n \ right] $。 Yoo(2019)研究了$ Q $ binmorial系数的点 - 分析,以调查有限领域的二次空间的组合。 $(\ MathBb {f} _ {q}^{n}的$ k $ - 二维二次空间的数量$(\ mathbb {f} _ {q}^{k},x_ {1}^{2}+x_ {2}^{2}^{2}^{2}+\ cdots+x_ {k}^{2}^{2})$也可以被描述为称为二元组合的dot-dot-dot-dot-dot-dot-cofickial coefficient, $ \ binom {n} {k} _ {d} $。 在本文中,我们研究了$ \ mathbb {z}/n \ mathbb {z} $的这种有限欧几里德几何形状与对称子集之间的组合对应关系。此外,我们表明可以用$ q $ binmial系数和多项式表示点二项式系数,并且我们证明点二维系数是$ q $的多项式。此外,我们研究了由点二项式系数$ \ binom {n} {k} _ {d} $给出的多项式的属性。
$q$-analogues of quantities in mathematics involve perturbations of classical quantities using the parameter $q$, and revert to the original quantities when $q$ goes $1$. An important example is the $q$-analogues of binomial coefficients which give the number of $k$-dimensional subspaces in $\mathbb{F}_{q}^{n}$. When $q$ goes to $1$, this reverts to the binomial coefficients which measure the number of $k$-sets in $\left [ n \right ]$. Dot-analogues of $q$-binomial coefficients were studied by Yoo (2019) in order to investigate combinatorics of quadratic spaces over finite fields. The number of $k$-dimensional quadratic spaces of $(\mathbb{F}_{q}^{n},x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2})$ which are isometrically isomorphic to $(\mathbb{F}_{q}^{k},x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2})$ can be also described as analogous to binomial coefficients, called the dot-binomial coefficients, $\binom{n}{k}_{d}$. In this paper, we study a combinatorial correspondence between this finite Euclidean geometries and symmetric subsets of $\mathbb{Z}/n\mathbb{Z}$. In addition, we show that dot-binomial coefficients can be expressed in terms of $q$-binomial coefficients and polynomials, and we prove that dot-binomial coefficients are polynomials in $q$. Furthermore, we study the properties of the polynomials given by the dot binomial coefficients $\binom{n}{k}_{d}$.