论文标题

一种深度学习算法,用于客观评估left裂儿童的性过度鼻涕

A Deep Learning Algorithm for Objective Assessment of Hypernasality in Children with Cleft Palate

论文作者

Mathad, Vikram C., Scherer, Nancy, Chapman, Kathy, Liss, Julie M., Berisha, Visar

论文摘要

目的:对超级肿瘤的评估需要临床医生的广泛感知培训,并在国际上进行大规模扩展这一训练是站不住脚的;这使得left儿童中已经存在的健康差异加剧了。在这项工作中,我们介绍了客观的超鼻气度度量(OHM),这是一种语音分析算法,该算法会自动测量语音中的过度鼻涕,并相对于一组受过训练的临床医生进行验证。方法:我们在大约100个小时的公共健康语音语料库中训练了深层神经网络(DNN),以检测通过在语音中产生鼻音辅音和鼻腔化音素产生的鼻声线索的存在。重要的是,该模型不需要任何临床数据进行培训。深度学习模型的后率概率是在句子上汇总的,并且说话者级别以计算欧姆。 结果:结果表明,欧姆与AmericleFT数据库中的感知性高肿瘤等级显着相关(r = 0.797,〜p $ <$ <$ 0.001),而与新的墨西哥cleft裂(NMCPC)数据库(r = 0.713,p <$ 0.001)。此外,我们评估了欧姆和发音错误之间的关系。欧姆在检测存在非常轻度性超麻液的存在方面的敏感性;并建立指标的内部可靠性。此外,将欧姆的性能与直接训练在高鼻语音样本的DNN回归算法进行了比较。意义:结果表明,欧姆能够与该数据集的AmericleFT训练有素的临床医生对超麻液的严重性进行评分。

Objectives: Evaluation of hypernasality requires extensive perceptual training by clinicians and extending this training on a large scale internationally is untenable; this compounds the health disparities that already exist among children with cleft. In this work, we present the objective hypernasality measure (OHM), a speech analytics algorithm that automatically measures hypernasality in speech, and validate it relative to a group of trained clinicians. Methods: We trained a deep neural network (DNN) on approximately 100 hours of a publicly-available healthy speech corpus to detect the presence of nasal acoustic cues generated through the production of nasal consonants and nasalized phonemes in speech. Importantly, this model does not require any clinical data for training. The posterior probabilities of the deep learning model were aggregated at the sentence and speaker-levels to compute the OHM. Results: The results showed that the OHM was significantly correlated with the perceptual hypernasality ratings in the Americleft database ( r=0.797, ~p$<$0.001), and with the New Mexico Cleft Palate Center (NMCPC) database (r=0.713,p<$0.001). In addition, we evaluated the relationship between the OHM and articulation errors; the sensitivity of the OHM in detecting the presence of very mild hypernasality; and establishing the internal reliability of the metric. Further, the performance of OHM was compared with a DNN regression algorithm directly trained on the hypernasal speech samples. Significance: The results indicate that the OHM is able to rate the severity of hypernasality on par with Americleft-trained clinicians on this dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源