论文标题
K3表面的HyperKähler异分析
Hyperkähler Isometries Of K3 Surfaces
论文作者
论文摘要
我们考虑K3歧管的对称性。已经对K3表面的全体形态符号自动形态学进行了分类,并观察到是Mathieu组的亚组$ M_ {23} $。最近,K3 Sigma型号的自动形态与$ SU(2)\ Times SU(2)$ $ r $ -smmetry通勤已由Gaberdiel,Hohenegger和Volpato分类。这些组都是康威组的亚组。我们填补了文献中的一个小空白,并对K3歧管的可能的Hyperkähler等轴测组进行了分类。有一个明确的列表,其中包括$ 40 $可能的组,所有这些列表都在模量空间中实现。这些组都是$ M_ {23} $的子组。
We consider symmetries of K3 manifolds. Holomorphic symplectic automorphisms of K3 surfaces have been classified, and observed to be subgroups of the Mathieu group $M_{23}$. More recently, automorphisms of K3 sigma models commuting with $SU(2)\times SU(2)$ $R$-symmetry have been classified by Gaberdiel, Hohenegger, and Volpato. These groups are all subgroups of the Conway group. We fill in a small gap in the literature and classify the possible hyperkähler isometry groups of K3 manifolds. There is an explicit list of $40$ possible groups, all of which are realized in the moduli space. The groups are all subgroups of $M_{23}$.