论文标题
在驱动的Rydberg气体中自组织的临界性的流体动力稳定
Hydrodynamic stabilization of self-organized criticality in a driven Rydberg gas
论文作者
论文摘要
最近在连续激光激发的超电原子气体中观察到了自组织临界(SOC)的签名(SOC)[S. S. Helmrich等人,自然,577,481--486(2020)]。这创造了研究这种有趣的动态现象的独特可能性,例如,在受控的实验条件下,以探测其鲁棒性和普遍性。在这里,我们检查了驱动的超速气体的自组织动力学,并确定意外的反馈机制,这对于与热浴的系统尤为重要。它通过从云的侧面向中心进行流体动力运输,在陷阱中心中占据了较长的临界区域。这可以补偿雪崩引起的原子损失,并导致特征性的平顶密度曲线,从而为SOC提供了额外的实验签名,并最大程度地减少了对SOC特征的不均匀性的影响。
Signatures of self-organized criticality (SOC) have recently been observed in an ultracold atomic gas under continuous laser excitation to strongly-interacting Rydberg states [S. Helmrich et al., Nature, 577, 481--486 (2020)]. This creates a unique possibility to study this intriguing dynamical phenomenon, e.g., to probe its robustness and universality, under controlled experimental conditions. Here we examine the self-organizing dynamics of a driven ultracold gas and identify an unanticipated feedback mechanism, which is especially important for systems coupled to thermal baths. It sustains an extended critical region in the trap center for a notably long time via hydrodynamic transport of particles from the flanks of the cloud toward the center. This compensates the avalanche-induced atom loss and leads to a characteristic flat-top density profile, providing an additional experimental signature for SOC and minimizing effects of inhomogeneity on the SOC features.