论文标题

使用光谱虚拟诊断对电子光束纵向特性的准确和自信预测

Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics

论文作者

Hanuka, A., Emma, C., Maxwell, T., Fisher, A., Jacobson, B., Hogan, M. J., Huang, Z.

论文摘要

纵向空间(LPS)提供了有关各种科学应用的电子束动力学的关键信息。例如,它可以深入了解自由电子激光器的高亮度X射线辐射。现有的诊断是侵入性的,通常时间无法以所需的分辨率运行。在这项工作中,我们提出了一种基于机器学习的虚拟诊断工具(VD)工具,以使用从相对论电子束的辐射中无损地收集的光谱信息准确预测每张镜头的LPS。我们通过实验或模拟数据证明了三个不同案例研究的工具的准确性。对于每种情况,我们都会引入一种方法来提高对VD工具的信心。我们预计光谱VD将改善DOE用户设施的实验配置的设置和理解,以及数据分类和分析。光谱VD可以在下一代高重复速率线性加速器上提供对纵向束属性的自信知识,同时减少数据存储,读取和流式传输要求的负载。

Longitudinal phase space (LPS) provides a critical information about electron beam dynamics for various scientific applications. For example, it can give insight into the high-brightness X-ray radiation from a free electron laser. Existing diagnostics are invasive, and often times cannot operate at the required resolution. In this work we present a machine learning-based Virtual Diagnostic (VD) tool to accurately predict the LPS for every shot using spectral information collected non-destructively from the radiation of relativistic electron beam. We demonstrate the tool's accuracy for three different case studies with experimental or simulated data. For each case, we introduce a method to increase the confidence in the VD tool. We anticipate that spectral VD would improve the setup and understanding of experimental configurations at DOE's user facilities as well as data sorting and analysis. The spectral VD can provide confident knowledge of the longitudinal bunch properties at the next generation of high-repetition rate linear accelerators while reducing the load on data storage, readout and streaming requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源