论文标题

函数负载平衡在网络上

Function Load Balancing over Networks

论文作者

Malak, Derya, Médard, Muriel

论文摘要

使用网络作为计算手段可以减少通信流量或网络传输的位总数。在本文中,我们建议在固定网络中分配计算负载,并制定基于流量的延迟最小化问题,共同捕获通信和计算的各个方面。我们利用SLEPIAN-WOLF的分布式压缩方案,该方案适用于任何协议信息,其中节点可以使用不同的代码簿独立进行压缩。我们介绍了熵溢流性的概念,以确定函数的稀疏程度并了解计算功能压缩的极限。我们利用Little的定律来使固定系统提供溢流性和计算处理因子之间的联系,以反映需要通信的流量比例。该连接使我们了解了应计算多少节点(隔离)来计算网络中所需的函数,而无需对拓扑提出任何假设。我们的结果表明,要有效计算具有不同熵过多的不同函数类别,可以通过为函数定制的过渡概率(即基于任务的链接保留量)重新结构网络,从而可以启用混合与分别处理多样的功能类别。他们还暗示,大多数可用资源都保留用于计算低复杂性功能与处理高复杂性的资源的较少资源。我们通过数值评估我们的技术,用于搜索,MAPREDUCE和分类功能,并推断每个计算任务的处理因子如何敏感到熵溢流性。

Using networks as a means of computing can reduce the communication flow or the total number of bits transmitted over the networks. In this paper, we propose to distribute the computation load in stationary networks, and formulate a flow-based delay minimization problem that jointly captures the aspects of communications and computation. We exploit the distributed compression scheme of Slepian-Wolf that is applicable under any protocol information where nodes can do compression independently using different codebooks. We introduce the notion of entropic surjectivity as a measure to determine how sparse the function is and to understand the limits of functional compression for computation. We leverage Little's Law for stationary systems to provide a connection between surjectivity and the computation processing factor that reflects the proportion of flow that requires communications. This connection gives us an understanding of how much a node (in isolation) should compute to communicate the desired function within the network without putting any assumptions on the topology. Our results suggest that to effectively compute different function classes that have different entropic surjectivities, the networks can be re-structured with the transition probabilities being tailored for functions, i.e., task-based link reservations, which can enable mixing versus separately processing of a diverse function classes. They also imply that most of the available resources are reserved for computing low complexity functions versus fewer resources for processing of high complexity ones. We numerically evaluate our technique for search, MapReduce, and classification functions, and infer how sensitive the processing factor for each computation task to the entropic surjectivity is.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源